江苏省大口径304薄壁不锈钢管, 鉴于此,本文基于DEFORM钢塑性有限元模拟软件,对不同坯料初始温度下不锈钢法兰管锻压过程中动态再结晶体积百分数和平均晶粒尺寸的影响规律,以期为实现塑性变形过程中的化和定量化控制,得到X的微观组织和性能提供依据。有限元模型的建立本文研究的不锈钢法兰管的形状规格尺寸及所设计的不锈钢法兰管锻压工艺几何装配模型如图所示。采用赵晓东对热压缩模拟实验获得的不锈钢动态再结晶模型[]。并对不同变形温度锻造过程中动态再结晶行为进行了试验及模拟研究,结果吻合良好,说明该模型能够准确用于预测不锈钢动态再结晶微观组织演变规律。zjdrzjyhzrj。
研究采用的X声波扫描显微镜的探头频率为MHz,分辨率为m,检测系统结构如图所示,其扫描轴重复精度为m,步进轴和聚焦轴的分辨率为m,脉冲收发器带宽~MHz,数据采集卡频率Gsample/s。检测时,将点焊试件平放于水槽中,调节运动控制单元使探头位于试件正上方,通过调节探头聚焦直至获得清晰的C扫描图像,如图所示。
江苏省大口径304薄壁不锈钢管, 一射线衍射现象及衍射斑纹金属晶体的X射线的衍射遵循布拉格定律,即:dsin=n)因此,衍射斑纹影像的成因,主要取决于式)中的各个参数:波长晶面间距d和衍射角。衍射斑纹的形状和尺寸除了决定于上述晶体的尺寸和排列状态之外,还取决于X射线波的特点,即管电压KV值大小和透照的几何条件入射束方向,即大小,胶片与工件的距离等)。一般情况下,不容易同时满足这些条件,所以,我们在射线底片上很少见到衍射斑纹。即使在同种奥氏体不锈钢或铝合金板材对接焊缝中,也不容易见到黑色线状的X射线衍射斑纹。
焊缝采集图像处理方法焊缝缺陷一般有几种类型:裂纹缺陷横向裂纹与纵向裂纹)气孔未熔合与未焊透等。图像特征提取受焊缝缺陷类型大小位置等因素的影响,按照一般方式对原始图像进行处理,存在丢失关键信息的可能性。以气孔缺陷为例,图所示的提取方式,由于气孔所在的几何位置的不确定性及原始图像大小的差异,使得图像提取出现了偏差,遗漏了焊缝缺陷信息。为避免出现以上情况,本文在图像预处理阶段对长宽较长的一边变换成,较短的一边进行等比变换[,]。
江苏省大口径304薄壁不锈钢管, X射线数字成像系统包括光源镜头CCD照相机图像处理模块等,如图所示。图X射线数字成像系统组成框图该系统的主要工作过程是,使X射线源和相机处于启动的工作状态下,通过采集卡和AD转换器,将采集到的图像在计算机的监控视频中实时显示,后通过数字图像处理系统对图像进行处理和分析。图为通过该系统采集到的一幅锅炉焊管焊缝的原始图像。由于锅炉焊管焊接处和非焊接处部位对X射线的吸收能力不同,从而在焊口形成类似椭圆的区域。
基于此,本文利用Matlab仿真软件对X射线数字图像进行去噪以改善图像质量,并在此基础上进行分割提取焊缝边缘,以板厚,,mm为例,对提取出的焊缝通过高频加强滤波判断出未焊透缺陷。图像降噪增强由于X射线数字化实时成像检测图像是实时的和动态的,受各种硬件的制约,其图像存在噪声大反差低图像模糊图像细节信息被噪声所淹没等特点,影响了焊缝分析和评定的效果,因此在提取焊缝之前进行图像降噪显得非常必要。一般来说,对滤波处理的要求有条:一是图像清晰;二是不破坏图像中的轮廓和边缘等有用信息。
在上述的一些应用中,常将CrNiTi不锈钢与钛合金连接起来使用,以满足特殊使用环境对性能的要求。目前,还未见有将表面自纳米化SSNC)运用于异种金属扩散连接的报道,为了提高CrNiTi不锈钢与钛合金在扩散连接中的原子扩散系数,X化连接接头的性能,作者对CrNiTi不锈钢棒材端面进行了SSNC高能喷丸)处理,并对喷丸后表层的组织和性能进行了研究。试样制备与试验方法试样制备试验材料为mmmm的CrNiTi不锈钢棒材,其化学成分质量分数/%,下同)为C,Si,Mn,Cr,Ni,Ti,S,P,余Fe。
将图像分割为幅图像,分别对图像的个顶点和中心所截取的×图像块,如图所示。处理后一方面可以实现对图片的全覆盖,不遗漏特征信息,另外一方面可以增加样本数量,保证识别的正确率。网络参数计算)卷积计算卷积的值即为特征图输入量,其公式为式中Mj为匹配选择;*为卷积操作;f·)为激活函数;klij为对应的卷积核。)卷积梯度计算卷积层中每个特征图j的误差信βjl可以过程重复得到式中β为误差信号;l为池化层数;α为池化层权值;up·)为上采样操作。