江苏省304无缝不锈钢管理论重量表, 图在基板下表面获得的A扫描信号典型的点焊X声C扫描图像如图所示,按照扫描层处A扫描信号的幅值和波形特征可将焊核的C扫描图像分为个特征区域,其中:区域区域以及区域为虚线围成的密闭区域,区域为焊核内部的白域,区域为焊核中部的圆形区域。图右侧的标尺表示扫描层处的A扫描信号幅值随C扫描图像的灰度变化而变化。分别提取以上个特征区域的A扫描信号图)。图点焊X声C扫描图区域是点焊镀锌钢板时锌层被挤出焊核而在其周围形成的密闭锌环,此时X声能够小部分地透过锌环进入底部薄板,该处的X声反射波幅值降低为基板下表面反射幅值的%图a)。zjdrzjyhzrj。
研究结果可用于指导同类产品的实际焊接生产,为X控制其残余应力和变形提供理论指导。材料及性能参数工件材料为耐热不锈钢XCrNi板材,厚度为mm,化学成分质量分数,%):C,Cr,Mn,Ni,Si,S,P,Fe余量。材料热物理性能参数导热率比热容密度)和力学性能参数弹性模量屈服应力热应变)随温度变化的取值如图所示。另外,泊松比取定值为。有限元分析网格模型模型尺寸为mmmmmm,有限元网格模型如图所示。
江苏省304无缝不锈钢管理论重量表, 常温下置于腐蚀介质中,一般不会使其发生晶间腐蚀。当经历不适当的加热,如在的温度范围内进行焊接时,会有高铬碳化物沿晶界析出,出现晶界贫铬,置于腐蚀介质中就会产生晶间腐蚀,长此以往,腐蚀会不断向里深入,直至完全破坏了晶粒间的联系,所以应对有晶间腐蚀倾向的奥氏体不锈钢进行固溶处理。通常是将其在进行加热,这可以使碳化物相充分溶解,固溶体强化,韧性及抗蚀性得到提高。研究发现:固溶处理时加热温度与保温时间的改变会对不锈钢的晶粒尺寸产生影响[]。
目前,焊缝图像缺陷特征主要包括几何形状灰度特征结构信息颜色信息等。本文研究缺陷图像的几何特征作为锅炉焊管焊缝缺陷标识性特征。图像采集X射线成像技术的基本原理是:因为X射线具有很强的透射能力,因此当射线照射并透过被检测的焊接物体时,焊接物体中焊接处有缺陷的部位和没有缺陷的部位因为对X射线的吸收能力不同,就会使透射过焊接物体后X射线的射线强度产生差异,因此通过对透过工件的X射线的强度差别来对工件中的缺陷进行分析就可以很好地对焊接物体中的缺陷进行检测和识别[]。
江苏省304无缝不锈钢管理论重量表, 在区域中的任意点应满足:c坠T坠t=坠坠x坠T坠x)+坠坠y坠T坠y)+坠坠z坠T坠z)+Q軍)式中:T为温度场分布函数;c为材料的比热容;为材料导热系数,为材料密度;t为传热时间;Q軍为内能源强度。其中c都是温度函数。初始条件:当t=时,工件具有初始温度,一般为周围环境温度。热源模型焊接热源模型是实现焊接过程数值模拟的前提条件。SYSWELD热源提供了D高斯热源双椭球热源和D高斯圆锥热源三种热源模型。
这些方法在一定程度上提高了材料表面性能。近年来,材料纳米化的技术研究不断进步,纳米技术的不断发展,使纳米化技术也成为表面处理的一种X手段。纳米材料晶粒十分细小,晶界面缺陷密度高,材料中的界面所占的体积百分数增加[]。葛利玲等[]利用X音速微粒轰击技术SFPB)对工程上常用的Cr钢进行表面min纳米化处理后进行低温气体渗氮处理,在渗氮h后获得了具有实用价值的化合物层,厚度~m,渗氮h后化合物层厚度增加到~m,氮化层深度达到约m,表面硬度提高到HV。
BBartczak[]通过数值模拟与有限元的方法分析了点焊与胶焊接头的应力分布,并与拉剪试验对比,发现胶焊接头比点焊有更高的能量吸收值。HectorRMCosta[]对IF钢的胶焊接头进行研究,结果表明,胶焊工艺相比点焊具有更高的剪切性能,且胶层的厚度对胶焊的力学性能有很大的影响。奥氏体不锈钢材料的外表美观,具有良好的焊接性耐磨性和耐腐蚀性,在制造X域得到广泛应用[]。然而,关于奥氏体不锈钢的胶焊研究鲜有报道。
不锈钢是广泛应用于高温X域的材料,近些年由于纳米材料具有特殊的物理化学和机械性能,受到各个X域广泛关注[],人们利用深度轧制等技术[,]制备出了块体纳米晶不锈钢BNSS)。与普通不锈钢CPSS)相比,纳米晶不锈钢具有更好的耐高温氧化和腐蚀性能[]。通过氧化动力学曲线表明,纳米晶不锈钢比普通不锈钢的氧化速率慢。利用扫描电镜观察发现,普通不锈钢表面被片状物和颗粒物所覆盖,上层为片状物,下层为颗粒物,而纳米晶不锈钢表面被颗粒物所致密覆盖[]。