(Ni33Co17、33HК)4J33圆棒
4J33膨胀合金
一、4J33概述
4J33是结合我国的陶瓷特点研制的陶瓷封接合金。合金在-60℃~600℃温度范围内具有与95%Al2O3陶瓷相近的线膨胀系数。主要用于和陶瓷进行匹配封接,是电真空工业中重要的封接结构材料。
1.14J33材料牌号4J33。
1.24J33相近牌号见表1-1。
表1-1
俄罗斯 | 美国 | 日本 | 德国 |
33HК(Ni33Co17) | - | KV-4(Ni33Co17) | - |
1.34J33材料的技术标准YB/T5234-1993《瓷封合金4J33、4J34技术条件》。
1.44J33化学成分见表1-2。
表1-2%
C | Mn | Si | P | S | Ni | Co | Fe |
≤ | |||||||
0.05 | 0.50 | 0.30 | 0.020 | 0.020 | 32.0~33.6 | 14.0~15.2 | 余量 |
在平均线膨胀系数达到标准规定条件下,允许镍、钴含量偏离表1-2规定范围。
1.54J33热处理制度标准规定的膨胀系数及低温组织稳定性的性能检验试样,在保护气氛或真空中加热到900℃±20℃,保温1h,以不大于5℃/min速度冷至200℃以下出炉。
1.64J33品种规格与供应状态冶韩实业可供品种有丝、管、板、带和棒材。
1.74J33熔炼与铸造工艺用非真空感应炉、真空感应炉或电弧炉熔炼。
1.84J33应用概况与特殊要求该合金经航空工厂长期使用,性能稳定。主要用于电真空元件与Al2O3陶瓷封接。制造大型电子管和磁控管的电极、引出盘和引出线。在使用中应使选用的陶瓷与合金的膨胀系数相匹配。当选用合金时,应根据使用温度严格检验低温组织稳定性。在加工过程中应进行适当的热处理,以保证材料具有良好的深冲引伸性能。当使用锻材时应严格检验其气密性。
二、4J33物理及化学性能
2.14J33热性能
2.1.14J33熔化温度范围该合金溶化温度约为1450℃。
2.1.24J33热导率4J33合金热导率λ=17.6W/(m•℃)。
2.1.34J33线膨胀系数标准规定的合金平均线膨胀系数见表2-1。
该合金的平均线膨胀系数见表2-2。4J33合金的膨胀曲线见图2-1。
图2-1 表2-2
/10-6℃-1 | /10-6℃-1 | ||||||
20~400℃ | 20~500℃ | 20~600℃ | 20~300℃ | 20~400℃ | 20~500℃ | 20~600℃ | |
6.0~6.8 | 6.6~7.4 | - | 6.3 | 6.1 | 6.9 | 8.3 |
2.24J33密度ρ=8.27g/cm3。
2.34J33电性能
2.3.14J33电阻率ρ=0.46μΩ·m。
2.3.24J33电阻温度系数见表2-4。
表2-4
温度范围/℃ | 20~100 | 20~200 | 20~300 | 20~400 | 20~500 |
αR/10-3℃-1 | 4.2 | 4.1 | 3.9 | 3.6 | 3.2 |
2.44J33磁性能
2.4.14J33居里点Tc=440℃。
2.4.24J33合金的磁性能见表2-6。
表2-6
H/(A/m) | B/T | H/(A/m) | B/T |
8 | 1.0×10-2 | 160 | 0.89 |
16 | 2.2×10-2 | 400 | 1.19 |
24 | 3.9×10-2 | 800 | 1.35 |
40 | 9.1×10-2 | 2000 | 1.49 |
80 | 0.47 | 4000 | 1.61 |
在4000A/m下,剩余磁感应强度Br=1.06T,矫顽力Hc=63.2A/m。
2.54J33化学性能该合金在大气、淡水和海水中具有较好的耐腐蚀性。
三、4J33力学性能
3.14J33技术标准规定的性能
3.1.14J33硬度深冲态带材的硬度应符合表3-1的规定。厚度不大于0.2mm的带材不做硬度检验。
表3-1
状态 | δ/mm | HV |
深冲态 | >2.5 | ≤170 |
≤2.5 | ≤165 |
3.1.24J33抗拉强度丝材和带材的抗拉强度应符合表3-2的规定。
表3-2
状态代号 | 状态 | σb/MPa | |
丝材 | 带材 | ||
R | 软态 | <585 | <570 |
Y | 硬态 | >860 | >700 |
3.24J33室温及各种温度下的力学性能
3.2.14J33硬度合金带材(退火态)硬度见表3-3。
3.2.24J33拉伸性能合金(退火态)在室温的拉伸性能见表3-3。
表3-3
σb/MPa | σP0.2/MPa | δ/% | HV |
539 | 343 | 32 | 158 |
3.34J33持久和蠕变性能
3.44J33疲劳性能
3.54J33弹性性能弹性模量E=139GPa。
四、4J33组织结构
4.14J33相变温度4J34合金γ→α相变温度在-80℃以下。4J33较4J34组织稳定。
4.24J33时间-温度-组织转变曲线
4.34J33合金组织结构该合金的组织为单相奥氏体。按1.5规定的热处理制度处理后,4J34再经-78.5℃下冷冻,不应出现马氏体组织。
当合金成分不当时,在常温或低温下将发生不同程度的奥氏体(γ)向针状马氏体(α)转变。相变时伴随着体积膨胀效应。合金的膨胀系数相应增高,致使封接件的内应力剧增,甚至造成部分损坏。影响合金低温组织稳定性的主要因素是合金的化学成分。从Fe-Ni-Co三元相图中可以看到,镍是稳定奥氏体(γ)相的主要元素,镍含量偏高有利于γ相的稳定。随合金总变形率增加其组织愈趋向稳定。合金的成分偏析也可能造成局部区域的γ→α相变。此外,晶粒粗大也会促进γ→α相变。
4.44J33晶粒度标准规定,深冲态带材的晶粒度应不小于7X,小于7X的晶粒不得X过面积的10%。对厚度小于0.13mm的带材,估计平均晶粒度时,沿带材厚度方向晶粒个数应不少于8个。
冷应变率为60%~70%的1mm厚4J33带材,在表4-1所示温度下退火,空冷后,按YB027-1992附录A进行晶粒度评X,结果见表4-1。
表4-1
退火温度/℃ | 600 | 650 | 700 | 750 | 800 | 900 | 1000 | 1100 | 1200 |
晶粒度X别 | 开始再结晶 | >10 | >10 | 10 | 10 | 8.0 | 6.5 | 5.0 | 4.0 |
五、4J33工艺性能与要求
5.14J33成形性能该合金具有良好的冷、热加工性能,可制成各种复杂形状的零件。但应避免在含硫的气氛中加热。在冷加工时,带材的冷应变率大于70%,退火后会引起塑性各向异性。应变率在10%~15%内,合金在退火时会导致晶粒急剧长大,也将产生合金的塑性各向异性。当终应变率为60%~65%,晶粒度7~8.5X时,其塑性各向异性。
5.24J33焊接性能该合金可采用钎焊、熔焊、电阻焊等方法与铜、钢、镍等金属焊接。当合金中锆含量大于0.06%时,将影响板材的氩弧焊焊接质量,甚至使焊缝开裂。
该合金的零件在与陶瓷封接前,应进行退火、清洗、镀镍,然后与金属化后再镀镍的陶瓷件用银焊封接。
5.34J33零件热处理工艺热处理可分为:消除应力退火、中间退火。
(1)消除应力退火为消除零件在机械加工后的残存应力,要进行消除应力退火:470~540℃,保温1~2h,炉冷或空冷。
(2)中间退火为消除合金在冷轧、冷拔、冷冲压过程引起的加工硬化现象,以利于继续加工。工件需在干氢、分解氨或真空中加热到750~900℃,保温15min~1h,然后炉冷、空冷或水淬。
该合金不能用热处理硬化。
5.44J33表面处理工艺表面处理可用喷砂、抛光、酸洗。该合金具有良好的电镀性能,表面能镀金、银、镍、铬等金属。
5.54J33切削加工与磨削性能该合金切削加工特性和奥氏体不锈钢相似。加工时采用高速钢或硬质合金刀具,低速切削加工。切削时可使用冷却剂。该合金磨削性能良好。