管件通常外圆表面的车削可分为粗车、半精车、精车和精细车四个加工阶段。选择哪一个加工阶段作为外圆表面的终加工,需要根据车削各加工阶段所能达到的尺寸精度和表面粗糙度,结合零件表面的技术要求来确定。粗车粗车的加工精度一般可达1T12-1T1O,表面粗糙度可达Ra.5μm。一般用于迅速切去多余的金属,常采用较大的背吃车床量、较大的进给量和中低速车削。半精车半精车加工精度可达lTlO-1T9,表面粗糙度可达Ra6.3-3.2μm,用于磨削加工和精加工的预加工,或中等精度表面的终加工。精车精车加工精度可达1TS-1D,表面粗糙度可达Ral.6-0.8μm,用于较精度外圆的终加工或作为光整加工的预加工。精细车精细车加工精度可达到1T6以上。
用作改善管件的使用性能的热处理方法有调质和正火。调质处理即悴火后再进行温回火,能获得良好的综合力学性能。它处理过的材料不仅强度,而且塑性、韧性也远于正火处理的材料。由于受到猝透性的影响,为了保证零件的使用性能,调质热处理一般安排在粗加工之后、半精加工之前进行。正火也能实现较好的力学性能,如果零件的性能要求不,则可选择正火处理。正火处理一般安排在原材加工之后进行。用作提升管件表面硬度的热处理方法有表面猝火、表面渗碳和表面渗氮等。表面悴火由于加热速度快、冷却速度也快,因此只对零件表面进行悴硬,容易实现“外硬里软"的目的。一般中、碳钢零件可直接选择表面悴火热处理来提升其表面硬度。表面渗碳是在加热(温)条件下将碳原子渗入表层来提升表面硬度的。
通常采用正火处理即可达到规定的性能指标。如果采用感应加热调质处理,则力学性能会远于标准规定的性能指标。250kW;回火加热电源为160kW,1.OkHz。为了保证悴火加热透热和均温,以适应热校直埣火工序的生产条件.采用了钢管整体加热到悴火温度,只设计一支感应器加热。另外,为了保证回火组织转变完全充分,确保回火性能的稳定,原材设计了保温感应器。这些措施对保证钢管的性能和性能的稳定性起到了良好的作用。热校直和悴火联合作业在液压支柱油缸钢管的埣火与校直工序由1台三棍校直机和喷淋冷却器共同组成。将加热到悴火温度的钢管,进入热校机后边校直边冷却,使校直与悴火同步进行。这种校直悴火方法保证了调质处理后,0.5mm?m-1的水平。
管件板材感应加热快速处理时,钢材是逐支通过感应器进行加热的.因此其加热温度是均匀的。钢材的冷却也是逐支单X冷却,其冷却速度也是均匀的。均匀加热和冷却是传统加热炉内无法实现的条件。因此,感应加热热处理钢材性能的均匀性和稳定性是传统加热炉中处理无法胜任的。感应加热快速退火处理后冷拉轴承钢材内应力的状况钢材经冷拉变形后,其内部存在很大的内应力,如不及时消除会引发内部裂纹。通过退火可以降低内应力,使其达到安全水平。传统加热退火处理时,钢材在炉内缓慢降温冷却,为降低内应力提升供了比较有利的条件。而感应加热快速退火处理,钢材从温到常温均在大气中冷却,能否降低钢材内应力并使其分布均匀。为此,笔者进行了试验和仪器分析退火前后相同部位GCr15冷拉材的内应力分布状况。
由于在大气中加热和冷却,表面会产生不同程度的氧化,严重地降低了冷拉钢材的表面质量和尺寸精度。由于氧化严重将产生氧化皮剥落,从而降低了金属的收得率。生产统计表明,无保护气氛加热炉进行GCr15冷拉材退火时,因氧化皮剥落造成的金属损失为0.10%~0.20%。不同加热方法与GCr15冷拉材的氧化增重试验结果。数据表明,在700~800°C温度时,感应加热的氧化增重植仅为电炉加热的20%~25%,快速加热和无保温时间的快速退火方法,能明显降低金属的氧化。由于感应加热降低了金属氧化,使退火处理前后钢材的尺寸变化很小。给出了GCr15冷拉材退火处理前后,对应位钢材直径的变化。数据说明,经800°C感应加热快速退火处理后。
钢材的尺寸变化均在标准规定允许范围之内,对钢材的尺寸精度等X没有影响。管件冷拉过程中,由于塑性变形而使金属晶粒产生滑移、扭曲和破碎,从而在金属内部产生应力。在应力作用下钢材的硬度升,塑性下降出现加工硬化现象,以致不能继续进行变形。为此,必须进行再结晶退火,消除硬化现象,恢复塑性。再结品退火温度,主要取决于金属的再结晶温度。而再结晶温度又随塑性变形程度、化学成分、加热速度、原始组织等因素而变化。对于冷拉轴承钢而言,再结晶温度主要由变形程度和感应加热升温速度两项因素所决定。GCr15冷拉钢材再结晶温度与变形程度的关系表7-40给出了变形程度与再结品温度的关系。随变形程度(压缩率)的增大,开始再结晶温度降低.而完成再结晶温度保持不变。